Start Submission

Reading: Rhabdomyolysis Associated with Severe Levodopa-Induced Dyskinesia in Parkinson’s Disease: A ...


A- A+
Alt. Display

Case Reports

Rhabdomyolysis Associated with Severe Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Report of Two Cases and Literature Review


Yuvadee Pitakpatapee,

Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok 10700, TH
About Yuvadee


X close

Jindapa Srikajon,

Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok 10700, TH
About Jindapa


X close

Tanita Sangpeamsook,

Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok 10700, TH
About Tanita


X close

Prachaya Srivanitchapoom

Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkok-noi, Bangkok 10700, TH
About Prachaya


X close


Background: Rhabdomyolysis associated with levodopa-induced dyskinesia (Rhab-LID) is an extremely rare, life-threatening, but treatable condition in patients with Parkinson’s disease (PD).

Case report: We reported two cases of Rhab-LID. The first case was a 64-year-old man presenting with severe generalized dyskinesia with elevated serum creatine kinase (CK) level. He was diagnosed with Rhab-LID owing to unpredictable gastric emptying time. The second case was a 61-year-old woman presenting with fever, myalgia, and disabling dyskinesia with elevated serum CK. She was diagnosed with dyskinesia-hyperpyrexia syndrome (DHS) due to increasing dosage of ropinirole and infection. Dopaminergic medications were stopped, and supportive care was initiated in both cases with excellent outcomes.

Conclusion: Early recognition, stopping dopaminergic medications, treating precipitating causes, and proper supportive treatment can provide favorable outcomes.

How to Cite: Pitakpatapee Y, Srikajon J, Sangpeamsook T, Srivanitchapoom P. Rhabdomyolysis Associated with Severe Levodopa-Induced Dyskinesia in Parkinson’s Disease: A Report of Two Cases and Literature Review. Tremor and Other Hyperkinetic Movements. 2021;11(1):39. DOI:
  Published on 30 Sep 2021
 Accepted on 14 Sep 2021            Submitted on 23 Jun 2021


Levodopa-induced dyskinesia (LID) is a common motor complication in patients with Parkinson’s disease (PD). It usually develops in the mid- to advanced stage of PD. Prevalence of LID is approximately 30% and 50% after 5-year and 10-year of initiating levodopa therapy, respectively.

The common phenomenology of dyskinesia in PD is chorea; however, it may present as a combination of chorea, dystonia, and athetosis [1]. Usually, dyskinesia occurs on the side of the body that was firstly affected by motor symptoms. However, it can also manifest in other parts of the body such as facial muscles, tongue, neck, and trunk [2]. Peak-dose dyskinesia occurring at the time of peak plasma level of levodopa is the most common type of dyskinesia, following by off-period dystonia which usually involving legs before taking the next dose of levodopa. The least common type is diphasic dyskinesia which starts after 10–15 minutes after taking levodopa, and dyskinesia re-emerges when the plasma level of levodopa decrease [1, 2]. Potential risk factors for developing LID are younger age at onset of diagnosis of PD, exposure to high-dose of levodopa (especially higher than 400–600 mg/day), female sex, low body weight, and akinetic-rigid subtype of PD [2]. LID may contribute towards various negative consequences in PD patients including both the physical and psychological domains. LID may cause falls, self-injury, exhaustion, fatigue, social embarrassment, anxiety, depression, and physical dependence.

Rhabdomyolysis associated with levodopa-induced dyskinesia is an extremely rare condition in advanced PD [3]. It can be a life-threatening condition named dyskinesia-hyperpyrexia syndrome, which is characterized by high serum creatine kinase (CK) level, acute kidney injury (AKI), fever, myalgia, and altered consciousness [4, 5]. Potential complications of rhabdomyolysis according to this syndrome are acute kidney injury and electrolyte imbalance, e.g., hyperkalemia, which leads to cardiac arrhythmia and death in the early stage. Moreover, disseminated intravascular coagulation could be found as a late serious complication [6]. However, early detection and prompt treatment could lead to a favorable prognosis. Herein, we report two patients with Rhab-LID who received early diagnosis and management, resulting in excellent clinical outcomes.

Case Report

Case 1

A 64-year-old man with a 10-year history of PD presented with severe generalized dyskinesia for two days. He had developed both diphasic dyskinesia and wearing-off in the past two years. He had a history of worsening abdominal distension and constipation over the past several years. He had been taking levodopa/benserazide (LB) 650 mg/day, entacapone 500 mg/day, piribedil 150 mg/day, and benzhexol 2 mg/day without recent dosage adjustment. He denied history of statin use, trauma, and infection. On admission, he had severe generalized dyskinesia with profuse sweating. His body temperature was 99.5 °F. His consciousness was good. Laboratory findings showed no leukocytosis, elevated blood urea nitrogen (BUN) (37.9 mg/dL, reference value 7–20 mg/dL), elevated serum creatinine (1.26 mg/dL, reference value 0.5–1.5 mg/dL), and elevated serum CK (4246 U/L, reference value 20–195 U/L). Urinalysis showed no myoglobinuria. Rhab-LID with acute kidney injury (AKI) was diagnosed. Intravenous fluid replacement and intravenous diazepam were promptly administered. All anti-parkinsonian medications were stopped. His dyskinesia markedly improved three days later, and serum CK normalized within five days. RYR1 gene mutation test was negative. He was discharged after six days of hospitalization on a regimen of LB 950 mg/day only.

Case 2

A 61-year-old woman with a 10-year history of PD presented with severe disabling dyskinesia and myalgia for four days. She had had troublesome diphasic dyskinesia within the past six years. She had been taking LB 875 mg/day and entacapone 800 mg/day. Ropinirole extended-release had been recently added and up-titrated to 4 mg/day within the past three weeks. She denied a history of current statin use and trauma. On admission, she was alert but mildly confused. Her body temperature was 100.2°F. She had severe generalized dyskinesia. Laboratory findings were leukocytosis (white blood cell count 10,290/uL), elevated BUN (37.8 mg/dL), and elevated serum creatinine (1.27 mg/dL), and highly elevated serum CK level (12,094 U/L). Urinalysis showed evidence of urinary tract infection (UTI) with myoglobinuria. Dyskinesia-hyperpyrexia syndrome (DHS) with AKI was diagnosed. Intravenous fluids replacement and empirical antibiotics were immediately administered. All anti-parkinsonian medications were stopped, and oral clonazepam was started. Her symptoms and consciousness were improved within four days. Autoimmune myositis antibody panels were negative. She was discharged after six days of hospitalization with a serum CK of 633 U/L. Her anti-parkinsonian medication was adjusted to LB 500 mg/day only.


Rhab-LID may be an under-reported and potentially life-threatening complication in LID patients. We reviewed the 15 cases of Rhab-LID and DHS reported in the literature, including the present cases (Table 1) [3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

Table 1

Clinical features of the two cases in the present report and previously reported cases.


Factor and Molho, 2000 50/M 6 L/C 600/60
Adding pramipexole with up-titration
< 1 N/A Generalized dyskinesia, shortness of breath, diaphoresis, and marked dehydration > 21,000 Rhab-LID without AKI Adding pramipexole Stopped all medications, IV fluid replacement Improved

Gil-Navarro and Grandas, 2010 68/F 12 L/C/E 750/250/1,000, pramipexole 4, amantadine 200 2 106.2 Generalized dyskinesia, drowsiness, fever, tachycardia, visual and auditory hallucination 1,455 DHS without AKI N/A Stopped pramipexole, adding quetiapine 25 mg/day, IV fluid replacement Improved and D/C 7 days after admission

Lyoo and Lee, 2011 74/M 17 L/C 3,000/300, L/B CR 400/100 9 100.8 Generalized dyskinesia, mild rigidity, good consciousness 24,651 DHS with AKI Increasing dose of levodopa Stopped all antiparkinsonian medications, IV midazolam 0.4-0.8 ug/min/kg Improved and D/C 9 days after admission

Bektas et al., 2014 76/F 15 L/C/E 1500/375/2,000 3 Reported normal BT Generalized dyskinesia, good consciousness 2,253 Rhab-LID with AKI Increasing dose of levodopa Hemodialysis, lowered levodopa dosage Died due to severe pneumonia with sepsis

Taguchi et al., 2015 70/F 13 L 600, pramipexole IR 3 then switched to ER 3, selegiline 5 7 104.5 Generalized dyskinesia, fever, tachycardia, visual hallucination >30,000 DHS with AKI Switching pramipexole IR to ER formulation Tapered down of all antiparkinsonian medications Improved

Herreros-Rodriguez and Sánchez-Ferro, 2016 76/F 18 LED 670.5 N/A 104.4 Dyskinesia, fever, good consciousness 257 DHS without AKI High environmental temperature Switched to LCIG Improved

Sánchez-Herrera et al., 2016 66/F 16 LCIG L=1,450,
safinamide 100, amantadine 200, ropinirole 8
8 104.4 Generalized dyskinesia, fever, confusion, visual hallucination 7,177 DHS without AKI Adding ropinirole, high environmental temperature Stopped all antiparkinsonian medications, IM clorazepate 50 mg, IV diazepam 10 mg, IV midazolam 10 mg Improved

Baek et al., 2017 1st visit; 74/F 23 L 375, amantadine 200, pramipexole ER 1.075 1 104.5 Generalized dyskinesia, fever, confusion, visual hallucination 1,023 DHS with AKI Fracture of ribs Stopped pramipexole ER, and amantadine, IV midazolam Improved and D/C 6 days after admission

2nd visit; 75/F 24 L 500, amantadine 200, pramipexole ER 1.075 2 100.8 Generalized dyskinesia, fever, confusion, visual hallucination 661 DHS with AKI Fall with trauma to the left flank Stopped pramipexole ER, reduced levodopa to 300 mg/day, IV fluid replacement Improved and D/C 9 days after admission

Sarchioto et al., 2018 Case 1; 80/M 17 LCIG L=1500, amantadine 200, pramipexole 1, sertraline 50 N/A 107.6 Generalized dyskinesia, fever, confusion, lethargy 16,040 DHS with AKI Cholecystitis, high environmental temperature IV fluid replacement, IV ATB, stopped pramipexole, and amantadine, reduced LCIG to 700 mg/day Died due to multi-organ failure 5 days after admission

Case 2; 76/F 18 LCIG L=1,200, pramiplexole 1, clozapine 25, venlafaxine 75, zolpidem 10 < 1 105.8 Generalized dyskinesia, stupor, tachycardia, respiratory distress, dehydration 2,967 DHS Infection, high environmental temperature N/A Died within 1 day after admission

Case 3; 79/F 30 LCIG L=1,250 4 103.1 Generalized dyskinesia, fever, dehydration 1,967 DHS with AKI Infection, high environmental temperature IV fluid replacement, IV ATB, reduced LCIG to 675 mg/day Improved and D/C 6 days after admission

Novelli et al., 2019 62/M 34 STN-DBS, L/C 2,000/200, E 1,600 3 hours 105.3 Generalized dyskinesia, fever, tachycardia, confusion 4,891 DHS Urinary tract infection, high environmental temperature IV fluid replacement, IV ATB, Reduced setting of DBS, reduced L/C to 750/75, and E to 1,200 Improved and D/C 4 days after admission

Cases from the present report Case 1; 64/M 10 L 650, E 500, piribedil 150, benzhexol 2 2 99.5 Generalized dyskinesia, sweating, good consciousness 4,246 Rhabdomyolysis
Induced LID
Delayed gastric emptying time Stopped all medications, IV fluid replacement, intravenous diazepam Improved and D/C 6 days after admission

Case 2; 61/F 10 L 875, E 800, ropinirole 4 4 100.2 Generalized dyskinesia, fever, dehydration, myalgia, good consciousness 12,094 DHS with AKI Urinary tract infection, increasing dose of ropinirole Stopped all medications, IV fluid replacement, intravenous diazepam Improved and D/C 5 days after admission

D/C, discharge; ER, extennded release; F, female; IR, immediate release; IV, intravenous; LCIG, levodopa-carbidopa intestinal gel; M, male; NA, not available; PD, Parkinson’s disease.

The exact pathophysiology of Rhab-LID and DHS is not well understood. All cases had long durations of PD with motor complications and had taken high dosages of dopaminergic medications (levodopa equivalent dose > 600 mg/day). Generalized dyskinesia was shown in all cases, and 4 of 15 cases also demonstrated autonomic instabilities such as diaphoresis, tachycardia, and tachypnea. Alteration of consciousness, for example, stupor, confusion, and visual hallucination, were detected in around 50% of cases. Our second case showed mild confusion, but the first case had good consciousness. Fortunately, our cases did not show any psychiatric manifestations. An incremental dopaminergic cell loss due to disease progression may play a major role in developing Rhab-LID in LID [7]. Other potential precipitating factors reported in the reviewed cases were up-titration of dopaminergic medications, switching dopaminergic medication from immediate-release to extended-release formulation, infection, trauma, dehydration, and living in high environmental temperature [5, 7, 8, 9, 10, 11, 12, 13]. Increasing the dosage of dopaminergic drugs was the most commonly associated factor (5 of 15 cases). Two possible mechanisms related to this factor are increment of pulsatile presynaptic dopamine-releasing coupling with reduced postsynaptic buffering capacity of dopaminergic receptors [13] and alteration of striatal synaptic plasticity, resulting in an increment of long-term potentiation and absence of depotentiation. Dehydration, physical stress, psychological stress, increased body temperature due to infection, living in a high ambient temperature, and autonomic dysfunction may increase dopamine release and increase the sensitivity of dopaminergic receptors [4]. Six of the 15 cases were associated with a combination of two precipitating factors.

In our first case, the potential precipitating factor may have been unpredictable gastrointestinal dysmotility, which may have increased the bioavailability of levodopa due to unpredictable levodopa absorption [7]. The second case could have been precipitated by increasing the dosage of ropinirole and UTI.

Twelve of the 15 incidences had a favorable outcome. The keys to success for managing patients with Rhab-LID include early recognition, prompt reduction in dopaminergic medications, treating possible precipitating factors, and proper supportive treatment, such as rehydration or prescribing antipyretics.

In conclusion, physicians should consider the possibility of Rhab-LID as a complication in patients with advanced PD presenting with severe generalized dyskinesia regardless of whether any precipitating factor can be identified. Early recognition and proper management can provide favorable clinical outcomes along with minimization of morbidity and mortality rates.

Ethics and consent

Our manuscript was approved for ethics by the Human Research Protection Unit, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand. The patient gave written informed consent for this case report.

Competing Interests

The authors have no competing interests to declare.


  1. Calabresi P, Di Filippo M, Ghiglieri V, Tambasco N, Picconi B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: filling the bench-to-bedside gap. Lancet Neurol. 2010; 9(11): 1106–17. DOI: 

  2. Pandey S, Srivanitchapoom P. Levodopa-induced Dyskinesia: Clinical Features, Pathophysiology, and Medical Management. Ann Indian Acad Neurol. 2017; 20(3): 190–8. 

  3. Bektas H, Deniz O, Temel S, Keklikoglu HD, Akyol S. Rhabdomyolysis related to dyskinesia in Parkinson’s disease. J Mov Disord. 2014; 7(1): 25–7. DOI: 

  4. Sarchioto M, Ricchi V, Melis M, Deriu M, Arca R, Melis M, et al. Dyskinesia-Hyperpyrexia Syndrome in Parkinson’s Disease: A Heat Shock-Related Emergency? Mov Disord Clin Pract. 2018; 5(5): 534–7. DOI: 

  5. Novelli A, Di Vico IA, Terenzi F, Sorbi S, Ramat S. Dyskinesia-Hyperpyrexia Syndrome in Parkinson’s disease with Deep Brain Stimulation and high-dose levodopa/carbidopa and entacapone. Parkinsonism Relat Disord. 2019; 64: 352–3. DOI: 

  6. Torres PA, Helmstetter JA, Kaye AM, Kaye AD. Rhabdomyolysis: pathogenesis, diagnosis, and treatment. Ochsner J. 2015; 15(1): 58–69. 

  7. Factor SA, Molho ES. Emergency department presentations of patients with Parkinson’s disease. Am J Emerg Med. 2000; 18(2): 209–15. DOI: 

  8. Gil-Navarro S, Grandas F. Dyskinesia-hyperpyrexia syndrome: another Parkinson’s disease emergency. Mov Disord. 2010; 25(15): 2691–2. DOI: 

  9. Lyoo CH, Lee MS. Rhabdomyolysis induced by severe levodopa induced dyskinesia in a patient with Parkinson’s disease. J Neurol. 2011; 258(10): 1893–4. DOI: 

  10. Baek MS, Lee HW, Lyoo CH. A Patient with Recurrent Dyskinesia and Hyperpyrexia Syndrome. J Mov Disord. 2017; 10(3): 154–7. DOI: 

  11. Taguchi S, Niwa J, Ibi T, Doyu M. Dyskinesia-hyperpyrexia syndrome in a patient with Parkinson’s disease: a case report. Rinsho Shinkeigaku. 2015; 55(3): 182–4. DOI: 

  12. Herreros-Rodriguez J, Sánchez-Ferro Á. Summertime Dyskinesia-Hyperpyrexia Syndrome: The “Dual Heat” Hypothesis. Clin Neuropharmacol. 2016; 39(4): 210–1. DOI: 

  13. Acebron Sanchez-Herrera F, Garcia-Barragan N, Estevez-Fraga C, Martinez-Castrillo JC, Lopez-Sendon Moreno JL. Dyskinesia-hyperpyrexia syndrome under continuous dopaminergic stimulation. Parkinsonism Relat Disord. 2017; 36: 103–4. DOI: 

comments powered by Disqus